![]() ![]() |
算术平均数与几何平均数(一)教案 |
作者:佚名 文章来源:网络 点击数 更新时间:2005/7/30 1:22:11 文章录入:蓝星 责任编辑:蓝星 |
|
教学目标
1.教材分析 (1)知识结构 本节根据不等式的性质推导出一个重要的不等式: (2)重点、难点分析 本节课的重点内容是掌握“两个正数的算术平均数不小于它们的几何平均数”;掌握两个正数的和为定值时积有最大值,积为定值时和有最小值的结论,教学难点是正确理解和使用平均值定理求某些函数的最值.为突破重难点,教师单方面强调是远远不够的,只有让学生通过自己的思考、尝试,注意到平均值定理中等号成立的条件,发现使用定理求最值的三个条件“一正,二定,三相等”缺一不可,才能大大加深学生对正确使用定理的理解,教学中要注意培养学生分析归纳问题的能力,帮助学生形成知识体系,全面深刻地掌握平均值定理求最值和解决实际问题的方法. ㈠定理教学的注意事项 在公式 (1) 例如 (2)这两个公式都是带有等号的不等式,因此对其中的“当且仅当……时取‘=’号”这句话的含义要搞清楚。教学时,要提醒学生从以下两个方面来理解这句话的含义: 当
仅当
综合起来,其含义就是: (二)关于用定理证明不等式 当用公式 它们本身也是根据不等式的意义、性质或用比较法(将在下一小节学习)证出的。因此,凡是用它们可以获证的不等式,一般也可以直接根据不等式的意义、性质或用比较法证明。 (三)应用定理求最值的条件 应用定理时注意以下几个条件: (1)两个变量必须是正变量; (2)当它们的和为定值时,其积取得最大值;当它们的积是定值时,其和取得最小值; (3)当且仅当两个数相等时取最值. 即必须同时满足“正数”、“定值”、“相等”三个条件,才能求得最值. 在求某些函数的最值时,还要注意进行恰当的恒等变形、分析变量、配置系数. (四)应用定理解决实际问题的分析 在应用两个正数的算术平均数与几何平均数的定理解决这类实际问题时,要让学生注意; (1)先理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数; (2)建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题; (3)在定义域内,求出函数的最大值或最小值; (4)正确写出答案。 2.教法建议 (1)导入新课建议采用学生比较熟悉的问题为背景,这样容易被学生接受,产生兴趣,激发学习动机.使得学生学习本节课知识自然且合理. 此文章共有2页 第 1 2 页 |
![]() ![]() |