![]() ![]() |
圆周角 |
作者:佚名 文章来源:网络 点击数 更新时间:2005/8/2 22:04:49 文章录入:蓝星 责任编辑:蓝星 |
|
第一课时 圆周角(一) 教学目标: (1)理解圆周角的概念,掌握圆周角的两个特征、定理的内容及简单应用; (2)继续培养学生观察、分析、想象、归纳和逻辑推理的能力; (3)渗透由“特殊到一般”,由“一般到特殊”的数学思想方法. 教学重点:圆周角的概念和圆周角定理 教学难点:圆周角定理的证明中由“一般到特殊”的数学思想方法和完全归纳法的数学思想. 教学活动设计:(在教师指导下完成)
(一)圆周角的概念 1、复习提问: (1)什么是圆心角? 答:顶点在圆心的角叫圆心角. (2)圆心角的度数定理是什么? 答: 2、引题圆周角: 如果顶点不在圆心而在圆上,则得到如左图的新的角∠ACB,它就是圆周角.(如右图)(演示图形,提出圆周角的定义) 定义:顶点在圆周上,并且两边都和圆相交的角叫做圆周角 3、概念辨析: 教材P93中1题:判断下列各图形中的是不是圆周角,并说明理由.
学生归纳:一个角是圆周角的条件:①顶点在圆上;②两边都和圆相交. (二)圆周角的定理
1、提出圆周角的度数问题 问题:圆周角的度数与什么有关系? 经过电脑演示图形,让学生观察图形、分析圆周角与圆心角,猜想它们有无关系.引导学生在建立关系时注意弧所对的圆周角的三种情况:圆心在圆周角的一边上、圆心在圆周角内部、圆心在圆周角外部. (在教师引导下完成) (1) 提出必须用严格的数学方法去证明. 证明:(圆心在圆周角上)
当圆心在圆周角外部时(或在圆周角内部时)引导学生作辅助线将问题转化成圆心在圆周角一边上的情况,从而运用前面的结论,得出这时圆周角仍然等于相应的圆心角的结论. 证明:作出过C的直径(略) 圆周角定理: 一条弧所对的 周角等于它所对圆心角的一半. 说明:这个定理的证明我们分成三种情况.这体现了数学中的分类方法;在证明中,后两种都化成了第一种情况,这体现数学中的化归思想.(对A层学生渗透完全归纳法) (三)定理的应用 1、例题: 如图 OA、OB、OC都是圆O的半径, 求证:∠ACB=2∠BAC 让学生自主分析、解得,教师规范推理过程. 说明: 2、巩固练习: (1)如图,已知圆心角∠AOB=100°,求圆周角∠ACB、∠ADB的度数? (2)一条弦分圆为1:4两部分,求这弦所对的圆周角的度数? 说明:一条弧所对的圆周角有无数多个,却这条弧所对的圆周角的度数只有一个,但一条弦所对的圆周角的度数只有两个. (四)总结 知识:(1)圆周角定义及其两个特征;(2)圆周角定理的内容. 思想方法:一种方法和一种思想: 在证明中,运用了数学中的分类方法和“化归”思想.分类时应作到不重不漏;化归思想是将复杂的问题转化成一系列的简单问题或已证问题. (五)作业 教材P100中 习题A组6,7,8 此文章共有2页 第 1 2 页 |
![]() ![]() |