![]() ![]() |
画正多边形教案 |
作者:佚名 文章来源:网络 点击数 更新时间:2005/7/30 1:06:20 文章录入:蓝星 责任编辑:蓝星 |
|
教学设计示例1 教学目标: (1)了解用量角器等分圆心角来等分圆;掌握用尺规作圆内接正方形和正六边形,能作圆内接正八边形、正三角形、正十二边形; (2)通过画图培养学生的画图能力; (3)对学生进行审美教育,提高学生的审美能力,促进学生对几何学习的热情. 教学重点: (1)量角器等分圆心角来等分圆; (2)尺规作圆内接正方形和正六边形. 教学难点: 准确作图. 教学活动设计:
(一)提出问题: 由于正多边形在生产、生活实际中有广泛的应用性,所以会画正多边形应是学生必备能力之一. 问题 教师组织学生进行,方法不限. 目的:充分发展学生的发散思维. (二)解决问题: 以下为解决问题的参考方案:(上课时教师归纳学生的方法) (1)度量法:①用量角器或30°角的三角板度量,使∠BAO=∠CAO=30°. ②用量角器度量,使∠AOB=∠BOC=∠COA=120°.
(2)尺规法:(如上右图)用圆规在⊙O上截取长度等于半径(2cm)的弦,连结AB、BC、CA即可. (3)计算与尺规结合法:由正三角形的半径与边长的关系可得,正三角形的边长= (三)研究、归纳 1、用量角器等分圆: 依据:等圆中相等的圆心角所对应的弧相等. 操 问题2:把半径为2cm⊙O九等份. (先画半径2cm的圆,然后把360°的圆心角9等份,每一份40°) 归纳:用量角器等分圆,方法简便,可以把圆任意n等分,但有误差. 2、 (1)问题3:作正四边形、正八边形. 教师组织学生,分析、作图. 归纳:只要作出已知⊙O的互相垂直的直径即得圆内接正方形,再过圆心作各边的垂线与⊙O相交,或作各中心角的角平分线与⊙O相交,即得圆接正八边形,照此方法依次可作正十六边形、正三十二边形、正六十四边形…… (2 教师组织学生,分析、作图. 归纳:先作出正六边形,则可作正三角形,正十二边形,正二十四边形………理论上我们可以一直画下去,但大家不难发现,随着边数的增加,正多边形越来越接近于圆,正多边形将越来越难画. (四)总结 (1)用量角器等分圆周作正n边形; (2)用尺规作正方形及由此扩展作正八边形、用尺规作正六边形及由此扩展作正12边形、正三角形. (五)作业 教材P173中13. 此文章共有2页 第 1 2 页 |
![]() ![]() |